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A unified treatment of viscoelasticity is developed in the framework of non- 
equilibrium classical statistical mechanics. An exact correspondence between 
Mori's continued-fractions formalism and theological circuits is shown. 
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1. I N T R O D U C T I O N  

In two preceding publications 13'41 we began a statistical mechanical 
investigation of equilibrium elasticity: "bulk" and "wall" expressions for the 
static elastic moduli were derived in the framework of equilibrium classical 
statistical mechanics and sufficient conditions for the vanishing of the shear 
modulus were found. In this paper, we continue this study by handling 
viscoelasticity by means of nonequilibrium statistical mechanics. 

Viscoelasticity deals with the mechanical response of a material to an 
externally imposed, time-dependent deformation. Its basic objects are the 
static modulus and the relaxation function (we limit ourselves to the linear 
theory, involving only small, homogeneous deformations; plasticity is 
ignored); it would then be highly desirable to characterize them 
microscopically by means of statistical mechanics. On the other hand, the 
question arises of whether the simple mechanical models widely used in 
viscoelasticity have a firm physical basis or, on the contrary, are just con- 
venient tools to fit the experimental data. 

Although the first part of this program has been largely developed by 
many authors (see references in the text), the resulting treatment contains 
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unsatisfactory points: at the theoretical level, no unified description exists; 
the exact correspondence between the theory of viscoelasticity and non- 
equilibrium statistical mechanics has not been systematically investigated; 
moreover, the recovery of equilibrium elasticity remains unclear, especially 
since there exists some confusion in the literature about the different 
definitions of the static moduli. Concerning the second point, which has 
not been studied yet to our knowledge, we shall show that there is an exact 
correspondence between Mori's continued-fraction formalism and a certain 
ladder circuit representation. 

This paper is organized as follows: in Section 2, we recall the 
phenomenology of viscoelasticity and the representation in terms of 
mechanical circuits. Section 3 contains the statistical derivation of the 
relaxation function and the static modulus by means of linear response 
theory. Section 4 deals with the circuit representation of the response 
function, illustrated with the linear chain of oscillators in Section 5. 

Finally, let us remark that the correspondence between the electric and 
viscoelastic circuits allows us to apply the results of Section 4 to elec- 
trodynamics. 

2. THEORY OF LINEAR VISCOELASTICITY 

In this section, we shall define the main quantities of interest charac- 
terizing the viscoelastic behavior of a body subjected to a given defor- 
mation. General references are provided in textbooks on the 
subject.(9,15,16,23, 24) 

In a relaxation experiment, constant strain u~162 is applied at t = 0; the 
resulting increase of stress Ar~/~(t) is given by 

Az~a(t) = [B~.e~ + K~a~.~(t)] u~ (2.1) 

(the Einstein summation convention over repeated Greek indices is 
assumed; in what follows we shall omit them). Here B is the static elastic 
modulus. K(t), monotonically decreasing with K ( ~ ) =  0, is the relaxation 
function. B+K(O) is the instantaneous elastic modulus. One speaks of a 
viscoelastic fluid if B = 0 and of a viscoelastic solid if B ~ 0. The Boltzmann 
superposition principle, cornerstone of the theory, lies in the assumption 
that during a viscoelastic deformation in which the applied strain is varied, 
the resulting stress can be determined from the sum of the strain increases. 
For a deformation such that u ( -  ~ ) =  0, (2.1) and the superposition prin- 
ciple lead to 

Az(t) = Bu(t) + (" du(v) K ( t -  r) (2.2) 
d cYd 
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If we put K ( t ) =  0 in (2.2), we find the Hookean solid, described by 

Ar( t )  = Eu(t)  (2.3) 

Putting B = 0 and K(t) = 7 cS(t) leads to the Newtonian fluid: 

At(t) = 7/~(t) (2.4) 

where 7 is the coefficient of viscosity. Although viscoelastic fluids (i.e., those 
for which B = 0 )  are generally non-Newtonian, it is possible to define a 
static viscosity coefficient q by the application of a constant strain rate 

= const: we get indeed from (2.2) 

At(t) = r/~ (2.5) 

with 

tl = dr K(r)  (2.6) 

In many experimental situations, the viscoelastic body is subjected to a 
harmonic strain of the form 

u(t) = Uo cos cot (2.7) 

The resulting stress increment is, from (2.2), 

At ( t )  = { [B + E1(co)] cos cot -E2(co)  sin cot} Uo (2.8) 

where E,(co), the dynamic or storage modulus, and E2(co), the dynamic 
friction or loss modulus, are given by the one-sided Fourier transforms 

El(co) = co & K(r)  sin mr (2.9) 

2 E2(CO) = co dr K(r)  cos cot 

The dynamic friction is related to the mean power dissipated during a cycle 
T = 27c/a) by 

1 

B(co) := B + E l ( c o )  can be interpreted as the frequency-dependent elastic 
modulus, restoring the static and the instantaneous elastic modulus, in the 
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low- and high-frequency limits, respectively (see, e.g., Ref. 9 for the 
derivation): 

lim 2(0) )  = B 
c 9 ~ 0  

lim k(co)  = B +  K(0 )  
c o ~ o o  

(2.11) 

In the same way, the dynamic viscosity q(co) is defined by 

tl(o~) "= E2(co)/co (2.12) 

with the limits 

lira q(co) = r/ 
c ' J ~ 0  

lim ~/(~o) = 0 
(2.13) 

The low-frequency limit then restores the static viscosity coefficient r/given 
by (2.6). The vanishing of rt(co) at high frequency constitutes the analytical 
statement of the intuitively obvious fact that under these circumstances, the 
material is behaving as an elastic solid. 

In the foregoing, we considered the deformation starting at t = -0% 
which eliminated transient effects; the frequency-dependent moduli 
previously defined therefore characterized steady-state conditions. 
However, it is useful also to consider a deformation u ( t )=  0 begining at 
t =  0 with a possible jump u(0). 

Then (2.2) gives 

At( t )  = Bu(t) + K(t)  u(O) + du(~) K(t  - ~) 
+ 

(2.14) 

= [~+K(0)3  u(t)+ dK(z)u( t -T)  (2.15) 

The Laplace transform of (2.14) or (2.15) reads 

Az(s) = H(s) ~(s) (2.16) 

where H(s), the response function, is given by 

H(s) = B + sK(s) (2.17) 
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The following limits hold: 

lim H(s)  = B 
s ~ 0  

lim H(s) = B +  K(O) 

lim (1 / s ) [H(s )  - B] = q 
s ~ 0  

(2.18) 

The Laplace transform representation of the response function constitutes 
the most convenient way to introduce simple mechanical models reproduc- 
ing the stress-strain constitutive relations: the Hookean solid, for which 
H(s)  = E, is represented by a spring of constant E: 

E 

In the same way, the Newtonian fluid, for which H ( s ) =  Fs, is represented 
by a dashpot of constant F: 

Let us also introduce the mass, represented by 

M 
�9 

and corresponding to the constitutive relation 

A~(s) = Ms2u(s)  (2.19) 

Arbitrary connections of a finite number of these three basic elements, in 
series or in parallel, lead to a response function of the form 

H(s)  = Q(s) /P(s)  (2.20) 

where Q(s) and P(s)  are polynomials in s, with deg Q ( s ) ~  deg P(s). The 
simplest examples are 

E 

(2.21) 
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with H(s) = E+ Fs (Kelvin solid), and 

E 

with H(s)=  (E+Fs) ~EFs (Maxwell fluid). 

Bavaud 

F (2.22) 

3. STATIST ICAL F O R M U L A T I O N  

Let 24~(x, p, t), the Hamiltonian of the N-particle system, be of the 
form 

~ ( x ,  p, t) = H(x, p) + hAul(X) (3.1) 

where hAul(X ) is the wall potential keeping the system confined to the 
bounded region A(t)c  R ~, and 

s P~P~ 
H(x, p )=  --~--m + V(x) 

l'=l 
(3.2) 

where V(x) contains all the remaining interactions, left unspecified. We 
define F~ �9 = - c~ V(x)/c3x~. 

The time-dependent stress tensor is 

where 

! {. 
%e(t) = ~ j dx dp f(x,  p, t) T~(x, p) 

/ll~t)l 
(3.3) 

and f (x ,  p, t) is the N-particle distribution function, which obeys the 
Liouville equation 

a x, _ ~ ( a ~ a f  a~af)  
~ f (  p, t ) =  i=1 ~ ~x7 r 

=:  --{J~gt~(x, p, t ) , / (x ,  p, t)} =" - iLf(x,  p, t) (3.5) 

We consider a homogeneous time-dependent deformation starting at t = 0: 

x '~ = [6~r ~ + u~(t)]  x/~ =-: D~(t) x ~ (3.6) 

E N T~p(x, p )=  -- P~P~ ~ F i ~x~ (3.4) 
?n i=1 i=l 
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The standard response theory applies to mechanical perturbations, (2s) i.e., 
to perturbations that represent the action of external fields added to the 
unperturbed Hamiltonian; the deformation of a system does not belong to 
this class (49'50)] one speaks in this case of thermal perturbation. However, 
and this constitutes the main point of this derivation, it is possible to 
generalize Green's dilatation method (~9) by a canonical transformation, by 
which the deformation appears explicitely in the Hamiltonian H(x, p) and 
therefore transforms the thermal perturbation into a mechanical one; we 
define 

2~ := O '(t) x~, /5~ := Dtr(t) Pi (3.7) 

The canonical character of (3.7) is easily checked. ~12) We also define 

g(i ,  ~, t ) : =  f(Dfr D ltr~, t ) = f ( x ,  p, t) (3.8) 

This satisfies 

Ot g(i ,  ~, t ) =  - -{ ,~ (Di ,  D - ' t ~ ,  t), g(i ,  ~, t)} (3.9) 

where we used the invariance of Poisson brackets with respect to a 
canonical transformation. 

We get 

hA~,~(Di) = hA(i) (3.10) 

where A := A(0) is the undeformed domain, and 

H(Di, D ltr~)=H(f~,[J)+ T.l~(i,[J)u~.~(t)+O(u2) (3.11) 

H(i,[I)+hA(fr ) is then the unperturbed Hamiltonian for g(i,[J,t), and 
T~,(i, [J)u./~(t) is the linear part of the perturbation. Application of the 
standard linear response theory (''1~ leads to 

g(i ,  ~, t )=  g(i ,  ~, 0 ) - ; ~  dr u~,a(t- ~ ) e iL~ 

x { T~(i ,  ~), g(i ,  ~, 0)} + O(u 2) (3.12) 

where the Liouville operator L acting on the dynamical variable A(i,  ~) is 
defined as 

iLA(fr ~)=  {H(i ,  ~ )+  hA(X), A(i, ~)} (3.13) 

Since the system is unperturbed at t = 0, we have 

g(i ,  ~, 0)--  fcq(i, ~) (3.14) 
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We shall work in the canonical ensemble, where feq is given by the 
Boltzmann factor; we get then 

and 

{ TT,5(X , p), feq('X, p)}  7--/~feq(X, 15)iLT~,~(i, 15) (3.15) 

where 

and 

But 

1 1 1 

IA( t ) l -  [AI det D(t)= IAI [ i  -o.e~uT~t)~;''~ + "~' '~,~u 2) 

T~(Df~, D-ltr15)~--- T~c~(X, p)-~ ~ W~/3~r%(x , 15) 

+ 6 ~ T ~ ( i ,  ~)] u~,~(t) + O(u ~) 

w~,~ ( i ,  ~) = - ( , ~ p ~  + 6 ~ P ~ 7  
i= 1 /~g/ 

u ~F~(~') 
c5 -~'~ 2. ~ (3.20) + ~/PiPi)- Uc~ 

i , j =  1 

Replacing in (3.17) ~(i,  15, t) by the expression (3.16), we have, up to linear 
terms in u~(t), 

1 
~ ( t )  = ~ ( 0 )  + ~-~ ( W ~  + ~ T~ - ~ T~ ) u~(t) 

H ' f d'c u~(t-'r)(T~('r) J~,~(O)) (3.21) 
]A] Jo 

(3.18) 

(3.19) 

~t 

i L z ~  ~ ~ • feq(~, ~) e ~76tx, ~) + O(u 2 ) (3.!6) 

where we used the invar iance  Offeq(X , 15) with respect to the unperturbed 
time evolution. 

We are now in a position to come back to our starting point, 
Eq. (3.3). The invariance of the phase space element leads to 

~(t)=lA--~7~-i I d~,d15g(~,,15, t) T~(O~,,V-'~tr15) (3.17) 
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where we used the unitarity of the evolution operator, and defined 

( A )  := f d~ d~ A(~, I~) f~q(~, ~) (3.22) 

Making use of the stationarity of the equilibrium distribution 

(T~(T)  T ~ ( 0 ) ) =  -(]b~r T~6(0)) (3.23) 

and comparing (3.21) with (2.15), we get 

K~r ) =j--~ [ ( T ~ ( r )  Tv6(0 ) ) -  lirno~ (T~(z) T~6(0))] (3.24) 

where the second term on the right-hand side has been added in order to 
ensure, as required by definition, the vanishing of the relaxation function at 
infinity. We assume that the system possesses the mixing property, (~) i.e., 

lim (T~/3(r) T~6(0)) = (T~)(T./6) (3.25) 
T ~ o C  

Defining (A; B)  := (AB) -  (A)(B), we get finally 

K~/s~(r) = (fl/tAl)( T~(z); T.~6(0 ) ) (3.26) 

Equation (3.26) makes the link between the theory of viscoelasticity and 
statistical mechanics. It remains to obtain an expression for the static 
elastic modulus; again, comparison of (3.21) with (2.15) leads to 

1 
B ~ 6  = ~-~ [ ( W~/~7 o ) + 6~. ( T~6 ) - 61, 6 ( T~  ) -- fl ( T~  ; T76 ) ] (3.27) 

which is (as it must be) the same expression as formula (2.13) of Ref. 3, 
obtained in the equilibrium framework. 

The frequency-dependent elastic moduli  and dynamic viscosity tensors 
are then, respectively, 

B~/~,~(co) = B~76 +/J~ [ ~ dr sin cot (T~a(r); L6(0) )  (3.28) 
IArJo 

r/~,~(co) =1--~ dr cos co~( r~(~);  T,~(0)) (3.29) 

When the system is isotropic, it is possible to define the bulk modulus 2(o)) 
and the shear modulus p(co) by 

/~.;6(co) = : 6~6~2(co) + (6~.~,c5~ + c5 ~@?)/~(co) (3.30) 
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and a frequency-dependent compressibility 

1/g(co) = 2(co) + (2/v) #(~o) (3.31) 

where v is the dimension of the system; the isothermal compressibility is 
recovered by the low-frequency limit 

1 1 @ ( A )  
l i m  . . . . .  hAl - -  ( 3 . 3 2 )  

Let us remark that, although the dynamic viscosity always possesses an 
interpretation in terms of dissipated power, 

P((D) = 1  (2)2- z , (3.33) 

its components have the mechanical interpretation (2.5) only if the 
corresponding component of the static elastic moduli tensor vanishes, i.e., if 
the system is behaving like a viscoelastic fluid for this component. This is of 
course the case for ordinary fluids with # (0)=/~m2(0)=0 .  The shear 
viscosity 

~S '~- ~,212(O) = d'~ ( r , 2 ( ' r )  r l 2 ( O ) )  (3.34) 

(recall that (T12) = 0 for fluids) can then be directly determined in a trans- 
verse constant strain rate experiment, by 

zlz,2(r) = ~s~,2(r) (3.?5) 

Concerning the infinite4requency (or adiabatic) elastic moduli 

1 

izll 
(3.36) 

we remark that they do not contain the stress-stress fluctuation and are 
therefore, from a theoretical point of view, easier to handle than the static 
ones. (Let us recall that the relationship between the adiabatic moduli and 
the energy is the same as that between the static moduli and the free 
energy.) If the interaction potential contains two-body terms only, direct 
evaluation of (3.36) and (3.27) requires the knowledge of the two-point 
correlation function and the four-point correlation functions, respectively 
(see, however, Ref. 4, where the use of the "wall theorem" leads to substan- 
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tial simplifications). For an isotropic system interacting through two-body 
central interactions, we get from (3.36) 

d I #(~)=B~212(~)=pkT+2v(v+2) drn2(r)--~r rV+ dr J (3.37) 

2(~176176176 2v(v+2)-- drr2V+4n~(r)dr r-V -'~r J 

(3.38) 

where n2(r) is the two-point distribution function in the thermodynamic 
limit, supposed to depend only on the distance between the particles (we 
assume that the integrand converges sufficiently rapidly to this ther- 
modynamic limit in order to take this limit under the integral; such 
hypotheses are discussed in Ref. 3). Here S(v) is the surface of the unit v- 
dimensional sphere IS(1 ) = 2, S(2) = 2~, S(3) = 4~z, etc.], 

The virial expression for the pressure 

s(v) fo ~ ~ dr(r) P =  lim -r,l(A)=pkT+-~v drrn2(r) ~ (3.39) 
IAF ~ oo  

is linearly dependent with the adiabatic Lam6 coefficients; the following 
holds: 

2(oo ) - #(o�9 ) = 2(P - pkT) (3.40) 

which constitutes the generalized Cauchy identity [2(oo)=#(oo)  was 
stated in 1828 by Cauchy(8'3~ 

Equation (3.40) was derived by Zwanzig and Mountain 151) for v = 3. 

R e m a r k s  

1. In (3.27) and (3.36), the terms linear with respect to the stress ten- 
sor will be referred to as pressure corrections. In a general way, they have 
often been omitted in the literature (26'44'48~ (see, however, Refs. 2 and 37 for 
a correct treatment of these corrections; see also Ref. 47, keeping in mind 
that the so-called Lagrangian strain tensor does not constitute in general a 
convenient expansion parameter(3)). 

The source of this confusion lies in the fact that the elastic moduli ten- 
sor (static or adiabatic), which is the derivative of the stress tensor with 



764 Bavaud 

respect to the displacements gradients, is not the second derivative of the 
thermodynamic potential (the free energy; respectively, the energy), 
pressure corrections making precisely the difference. 

2. The expression (3.34) was first obtained in 1953 by Green, (21) who 
identified the transport coefficients appearing in experimentally known 
transport laws with those derived from a Fokker-Planck equation that the 
set of "gross variables" are postulated to obey. 

The use of a local grand canonical equilibrium ensemble led Mori (34) 
in 1958 to the same expression, which was obtained also by Montroll (33t in 
1959 by a simple derivation in the spirit of the Kubo formalism. Equation 
(3.34) was found again by McLennan (31) in 1960 by explicit consideration 
of local generalized forces which bring the system about a deviation from 
equilibrium. These different methods are discussed in an excellent review by 
Zwanzig. (5~ 

The bulk viscosity r/b:= r/1~22(0) obtained from (3.29) differs from the 
expressions given by Mori/35) and De Vault and McLennan (~3'321 by the 
fact that these authors consider the autocorrelation of the stress tensor 
corrected by derivatives of the pressure with respect to the number of par- 
ticles and the energy. It is generally admitted (~3'5~ that the first correction 
is conditionned by the use of the grand canonical ensemble (see Refs. 3 and 
41, where similar corrections arise already at the equilibrium level when 
passing from one ensemble to another). The second correction seems to 
arise from an incorrect treatment of the hydrodynamic equations used both 
by Mori and McLennan: the momentum conservation equation should 
contain the hard-wall forces exerted by the container on the system. 
Omission of this term leads, via the virial theorem, (4'28) to a vanishing 
pressure. On the other hand, the isothermal character of the coefficients 
obtained is uncertain because in Ref. 13 this second correction arises from 
the time derivative of the local temperature. Moreover, the use of 
phenomenological equations, such as the Navier-Stokes equation, which 
are ill-adapted to discuss the pressure corrections, and the fact that the 
bulk viscosity does not possesses the mechanical interpretation (2.5) con- 
stitute supplementary sources of difficulty. 

3. In 1952, Green (2~ derived (3.37) (without the kinetic part) by 
expanding the virial pressure (3.39) in the deformed state in terms of dis- 
placement gradients. Indeed, such a procedure leads to the adiabatic 
moduli and generates in a straightforward way the pressure corrections. 
Equations (3.37) and (3.38) were also obtained by Zwanzig and 
Mountain, (51~ but their derivation would be incorrect if/~(0) 4=0, whereas 
(3.38) holds in the general case; moreover, they reduced the four-body 
expression (T~a T12)in a two-body form by their equation (32), where the 
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boundary term is missing (putting A = R~ would lead, by use of the virial 
theorem, (4) to a vanishing pressure!). 

4. The form (3.26) for the relaxation function ensures that the dis- 
sipated power (3.33) is positive. Let us define 

/~ (3.41) f( t)  "= ~-~ <T~/~(t); T),~(0)> u~uT6 

where u~ is an unspecified real matrix; for arbitrary ti e R and zie C 

N N 2 

Z f(&- ti) z:z* :.y~l = l  - ~ <  ,=1 ~ [ T ~ ( t j - < T ~ > ] u ~ z ,  ~>0 (3.42) 

i.e., f( t)  is a positive-definite function, as was pointed out in Ref. 13 (we 
used the stationarity property of the equilibrium time evolution). By 
Bochner's theorem (391 and due to the fact that f( t)  is an even function, it 
follows that 

I ~ dt cos oatf(t) >~ 0 (3.43) 
~0 

which leads, via (3.29), to the positiveness of the dissipated power. The fact 
that f ( t )  is of positive type implies in particular that If(t)] ~<f(0), but f ( t )  
need not be monotonic and nor indeed even positive for all values of its 
argument, t13) (In Section 5, we meet an example where f( t)  is the Bessel 
function of order zero.) The customary assumption about the monotonicity 
of the relaxation function should then be weakened. The concept of fading 
memory materials (j~ constitutes precisely such an extension (which, 
however, does not tell anything about the positive-definiteness of the 
relaxation function). 

5. The method of dilatation is particularly useful in the sense that it 
does not imply knowledge of the form of the "wall potential." In fact, the 
question about the nature of this potential is more subtle that can appear 
at first sight: an arbitrary external potential, sufficiently high outside the 
system, cannot do the job, contrarly to widespread opinion: this 
arbitrariness would be reflected on the force acting on the particles, i.e., on 
the pressure. On the other hand, it appears straightforward that the elastic 
collision of a particle with the wall implies a generalized force proportional 
to the square of the particle velocity. (6) 

Let us emphasize again that the method used is of course limited by its 
initial framework: linear response theory, canonical ensemble, and 
homogeneous deformation; it excludes the large amplitude of deformation, 
in particular the shock waves, as well as the consideration of local depen- 



766 Bavaud 

dent viscoelastic properties, such as like sound propagation. Moreover, the 
interesting molecular dynamics studies at constant stress of Andersen, ~521 
Parrinello and Rahman, (531 Ray and Rahman, (54) and Hoover et al. (55~ are 
beyond the scope of this article. Finally, the absence of interaction terms 
between the system and the thermostat during the perturbation constitutes 
a failure inherent to any application of the linear response theory; see, 
however, Ref. 49, p. 145, for some arguments justifying such a procedure. 

4. LADDER NETWORK REPRESENTATION 

Let A(x, p) be a dynamical variable (whose invariant part is set to be 
zero for convenience) obeying to the Liouville equation 

d 
A(x, p) = iLA(x, p) (4.1) 

Mori's formalism, (36~ which consists in representing the Laplace transform 
of the autocorrelation of A by means of a continued fraction, is obtained 
by a Gram-Schmidt orghogonalization of the sequence of the initial time 
derivatives of A, relative to the inner product 

(A, B ) : =  {AB) (4.2) 

[the brackets are defined in (3.22)]. Let us briefly recall Mori's result. 
Setting 

with 

(L,...) r 
P k ' "  .-- (-~-#, - -  Jk (4.3) 

(fk fk) 

fk := iLk fk -  t (4.4) 

L k ' " : = ( ~ - - P k  l)Lk 1''" (4.5) 

fo := A(0), Lo := L (4.6) 

and 

f~(t) := exp(iLkt) fk 

It can be shown that the Laplace transforms of 

3jIt) ' =  (fj '  ~( t ) )  
(~,  f~) 

(4.7) 

(4.8) 
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obey the recurrence relations 

where 

l 
~j(s) - (4.9) 

S - -  ioj Jr-  A j +  1 ~-~j+ 1(S) 

(~., Lj~) (4.10) co/'= f,) 

(f/ '  ~ )  (4.11) 
(f ,-  1,f:-  1) 

Mori's original work did not fully exploit the autoadjontness of the 
Liouville operator with respect to the inner product (4.2). Indeed, it can be 
shown that 

co/-- 0 (4.12) 

when A is a Hermitian variable, ~14) and that (4.4) reduces to  (29) 

f~=iLrk ,+A~--lfk 2 (4.13) 

The iteration of (4.9) leads to the announced continued fraction. This for- 
malism possesses a conceptual interpretation (hierarchy of generalized 
Langevin equations~7.36t), and provides a theoretical tool for numerical 
calculations. (22'45) What is new, to our knowledge, is the interpretation of 
(4.9) in terms of a mechanical circuit, which we shall develop now. Taking 
as observable 

A~#(x, p ) : =  T~#(x, p ) -  (T~#(x, p))  (4.14) 

we write the relaxation function (3.16) as 

# fl 
K(t) =1-~1 (A(t)A(0)) =l-~ (A2) '-'~0(t) (4.15) 

We suppose here that we are concerned with a single variable A, and 
therefore we did not write the indices in (4.15) (when, on the contrary, we 
consider, e.g., K1222(t), which involves the time correlations of two different 
observables, the previous formalism must first be generalized to include 
matrix correlation functions, which does not offer difficulties(V)). 

The following circuit corresponds to the response function (2.17): 

B 
A A A A A 

H(s) - _ _ ~ - ~  V V V V ~ - ~ _ _  (4.16) 
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Applying (4.9) twice leads to 

1 
- 1 +  

s~:(s) 
Defining 

A2j+ I 

s2 + A2j+2s~-j+2(s) 

h/(s) := ]-~ (A2)  

M: .= ~ ~A 2) 

E~ "= ~-~ (A 2 ) 

A 2 A 4 " " A  ~ 

AxA3""A2j_ t 

A2A4""A2j 
A1A3 " A2i+1 

A2A4""A2j 
A 1 A 3 ' " A 2 j  l 

s~.2j(s) 

(4.t7) 

(4.18) 

(4.19) 

(4.20) 

for j = 0 ,  1, 2 ..... we can write (4.15) as 

1 1 1 
4 (4.21) 

hi(s)-  Ej Mjs: -F hi__ l(S) 

By (4.15) and (4.18), we have 

sK(s) = ho(s ) (4.22) 

The main point lies in the fact that (4.21) corresponds to the following cir- 
cuit representation: 

Ej Mj 

We are then led to the following infinite ladder network representation for 
the response function: 

B 

H (s) _= E ~ - - [ ~  VEo v 

E l  

, .  E~ 

'V~A 

M o  

O-- 
M, 
O-- 
M2 
O-- 
M3 
C)--- 

(4.24) 
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Let us remark that 

B I f d  4 If4l 4 rf2jl 4 
MJ=lA-~llf,141f314 " "  I f z j ,  ]4 i f2 j+ 112 

fl I.f214 I f4]4"" lf2j 214 
E ;=  IAI I f ,  I 4 ~ : r f 2 /  It 4 If2/t2 

(4.25) 

(4.26) 

with 

If, I 2 := (~, Z)  (4.27) 

Let J be the first index for which IfJ[ = 0. If J =  2j, (case a), then Ej = 0 and 
the circuit (4.24) ends with 

Ej -2 M j-2 

l -<2)--- (4.28) 

If J=2j+ I (case b), then M j =  cc and (4.24) ends with 

E j_, 

In both cases we have 

M j _  1 

O---- (4.29) 

K(0)  = lim sK(s)=Eo (4.30) 
s ~ c o  

In case (a) we get 

lim sK(s) = 0 (4.3l) 

q = lira K(s) = 0 (4.32) 
S ~ 0  

The absence of dashpot  elements in (4.23) is a consequence of the con- 
servative nature of the Hamiltonian systems considered here; let us stress 
the fact that the vanishing viscosity of the finite circuit does not involve the 

822/46/3-4 22 
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same for the infinite one: the representation (4.23) is generally not 
uniformly convergent for s = 0 (see remark 1 below). Moreover, as will be 
explicitly shown in the example of Section 4, the limit s ~ 0 and the ther- 
modynamic limit do not generally commute. 

In case b, the viscosity diverges! It is in fact conjectured that, due to 
the symplectic structure of Hamiltonian systems, the Hilbert space spanned 
by fo, fl,-.., is of even dimension, and so the case b never appears. 

R e m a r k s  

1. What about the convergence of the representation (4.24) in the 
infinite case? Let us first remark that the series Hn(s) and H~(s) construc- 
ted by setting, respectively, En = 0 and M,, = ~ have the following proper- 
ties: 

H, + ~(s) >~ H~(s) (4.33) 

H~+ l(s) <~ H~(s) (4.34) 

Hn(s) <~ H(s) <~ Hn(s) (4.35) 

(these inequalities are immediate when one considers the stress needed to 
deform the related circuits). Since these two series are monotonic and 
bounded, they therefore converge, respectively, to H~(s) and H~(s). 
Moreover, the following result (which is a consequence of the theorem due 
to Stieljes (14'43'46)) holds: if one or both of the two series 

M,, ~ 1 (4.36) 
j = 0  j - -O Ej 

diverges, then 

H~(s)=H~(s)=H(s) (4.37) 

and (4.24) is uniformly convergent for Re s r 0. If both of the series (4.36) 
converge, then 

H~(s) ~ H~(s) (4.38) 

and (4.24) diverges by oscillation. 

2. In a work C5) on the viscoelasticity of the Pearson gas (which con- 
stitutes a dissipative system), we were led to a ladder representation of the 
response function similar to (4.24), with the difference that springs were 
replaced by dashpots and masses by springs. Moreover, we established ~6~ 
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that this representation is possible if and only if the relaxation function is 
the Laplace transform of a positive quantity, i.e., if the so-called relaxation 
spectrum R(r) />0 defined by 

f0 o K(t) = d~ R(r) exp( - t/r) (4.39) 

exists. For the Hamiltonian systems considered here, nothing ensures that 
the relaxation spectrum exists; i.e., that K(t) would be the Laplace trans- 
form of a positive function. On the other hand, we have seen in a remark of 
Section 3 that K(t) is the Fourier transform of a positive function. The 
similarity of these two situations leads us to conjecture finally that the 
representation (4.24) holds if and only if the relaxation function (indepen- 
dently of its possible Hamiltonian origin) is of positive typeJ 6) 

5. AN EXAMPLE:  THE  L INEAR C H A I N  OF C O U P L E D  
O S C I L L A T O R S  

As an illustration of the previous developments, we shall consider the 
linear chain of N identical classical oscillators of mass m with periodic 
boundary conditions, which is one of the few exactly solvable available 
models. The Hamiltonian is given by 

H(p, x ) =  + -~,;x,xj (5.1) 
i= 1 i,j= 1 

(we shall not give detailed calculations, but refer to, e.g., Refs. 17 and 18, 
which deal with the velocity autocorrelation function). Introducing the nor- 
mal coordinates, the stress tensor (3.4) reads 

N N 

r = - 2  2 2 , * s (5.2) 
q = l  q - - I  

We get 

and 

( T )  = 0 (5.3) 

N 

(T(t) T(0)> =4(kT)  2 ~,, cos(2 f2qt) (5.4) 
q = l  

where the f22 are the eigenvalues of the dynamical matrix. Equation (3.10) q 

reads 
N N 

W = 3 Z PqP~q + 2 2 * s Qq Q q (5.5) 
q = l  q = l  
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and we have 

( W )  = fi(  T 2) = 4 N k T  (5.6) 

The static elastic modulus B as defined by (3.17) is therefore vanishing. 
This fact is a direct consequence of the periodicity of the chain. (As a mat- 
ter of fact, the wall theorem (4) enables us to express the elastic moduli ten- 
sor as an integral on the boundary of the system, missing in the case of the 
periodic chain.) 

The response function (2.17) of the finite chain of length tAi =: L is 

Ha(s ) = s R c ( s ) = s - ~  f o  dt (T ( t )  T ) =  4 k T  
s 2 

L q =, s 2 + 4Qq 2 (5.7) 

whose representation in terms of circuit is immediate: 

with 

H L (S) = 

The viscosity 

E1 M1 

E2 M2 

? 

EN MN 

O 

(5.8) 

Eq = 4kT/L,  7rq = kT/Lf22q (5.9) 

~/L = lim RL(O) (5.10) 
s ~ O  

is zero, and this representation is found to be inadequate when taking the 
thermodynamic limit L --+ oo: the values of the springs and masses tend to 
zero, while the number of elements grows to infinity! The alternative we 
shall develop now constitutes an illustration of the results obtained in Sec- 
tion 4. Restricting ourselves to nearest neighbor interactions of coupling 
values me) 2, we have 

f2 q = 2o) sin(rcq/N) (5.11 ) 

The thermodynamic limit of (5.4) is 

fl _ 4pk T f,~ 
K ( t ) = l i m  z ( T ( t )  T ( 0 ) ) -  ~ Jo dycos(4cotsiny)  

= 4pkTJo(4Ogt ) (5.12) 
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where p is the density of the linear chain. The Laplace transform of the 
relaxation function reads 

K(s )  = 4 p k T / ( s  2 + 16(.o2) 1/2 (5.13) 

leading to a finite viscosity 

= • ( o )  = p k T / 0 )  (5.14) 

It is then explicitly shown by this example that the limits s ~ 0 and L --* oo 
do not generally commute. Taking the latter first, the Poincar6 recurrence 
times grow to infinity/27~ and dissipative behavior appears. Taking account 
of the result (3s) 

2a 
(1 + 4a)1/2 = 1 - t - - - -  (5.15) 

l + a  

l + a  

l §  

we obtain 

1 1 Z,o(S)=(160)2+$2)1/2 S q_ 80) 2 (5.16) 

S q- 4692 

S q- 40) 2 

Comparison of (5.16) with (4.9) leads to the identification 

d1=80)  ~, Ai=40) 2 for j~>2 (5.17) 

(see Ref. 14 for a similar result in the case of the velocity autocorrelation 
function). The viscoelastic properties of the linear harmonic chain are 
therefore exactly given by the infinite circuit (4.24), with, by definitions 
(4.19) and (4.20), 

B = 0  

E o = 4 p k  T 
(5.18) 

Ej  = 2 p k  T, j = 1, 2, 3 .... 

M j  = p k  T/20) 2, j = O, 1, 2 .... 

The series (4.36) diverge, so (4.24) is uniformly convergent for all s with a 
nonzero real part. 
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